

Switch ON the Open-Cube and connect it to the computer via USB-B (look for COMport number in the device manager)

1. Use Thonny software to create and debug Micropython programs (select Raspberry Pi PICO as a platform and the

right COMport , go to Tools/Options/Interpreter…)

2. See the next page for a list of most common commands, check the full description of available functions on

following pages for more detailed information and useful tips.

3. Alternatively, pair the Open-Cube via Bluetooth serial with your computer, use the plug-in to the Thonny program

and upload programs wirelessly, see section 3.9 in the more detailed instructions (3.9.4).

For more information please visit: open-cube.fel.cvut.cz

OPEN-CUBE QUICK START GUIDE

https://open-cube.fel.cvut.cz/

LIST of most useful micropython O-C commands

TIMING

from time import sleep , sleep_ms , sleep_us

sleep(1) # Sleep program for 1 second

sleep_ms(2) # Sleep program for 2 miliseconds

sleep_us(3) # Sleep program for 3 microseconds look also for "Timer"

MOTORS (the same for NXT and EV3), more in chapter 7

from lib. robot_consts import Port # import constants

robot.init_motor(Port.M1) # initialize the motor

robot.init_motor(Port.M2) # initialize the motor

robot.motors[Port.M1].set_power(50) # set power to 50%, clock-wise

robot.motors[Port.M2].set_power(-20) # set power to 20%, counter-clock-wise

SENSORS

NXT TOUCH

from lib.robot_consts import Sensor, Port # import constants, sensor types...

robot.init_sensor(sensor_type = Sensor.NXT_TOUCH, port = Port.S1) # init the sensor on port S1

touch_pressed = robot.sensors.touch[Port.S1].pressed() #read the state of the button

NXT OPTICAL see chapter 4.2 for more functions!

from lib.robot_consts import Sensor, Port # import constants, sensor types...

robot.init_sensor(sensor_type = Sensor.LIGHT, port = Port.S1) # init optical sensor at port S1

robot.sensors.light[Port.S1].on() #switch on the LED

light_intensity = robot.sensors.light[Port.S1].intensity() # measure the light intensity

NXT MICROPHONE

from lib.robot_consts import Sensor, Port # import constants, sensor types...

robot.init_sensor(sensor_type = Sensor.NXT_SOUND, port = Port.S1) # init the sensor on port S1

sound_intensity = robot.sensors.sound[Port.S1].intensity() # read the sound intensity

NXT ULTRASONIC

from lib.robot_consts import Sensor # import constants, sensor types...

robot.init_sensor(sensor_type = Sensor.NXT_ULTRASONIC) # initialize the sensor

distance = robot.sensors.ultra_nxt.distance() # measure distance

NXT GYROSCOPE - currently not implemented (I2C interface, manufactured by HiTechnic)

EV3 TOUCH

from lib.robot_consts import Sensor, Port # import constants, sensor types...

robot.init_sensor(sensor_type = Sensor.EV3_TOUCH, port = Port.S1) # initialize the sensor

touch_pressed = robot.sensors.touch[Port.S1].pressed() #read the state of the button

EV3 OPTICAL see chapter 5.2 for more functions (color sensing for example)

from lib.robot_consts import Sensor, Port # import constants, sensor types...

robot.init_sensor(sensor_type = Sensor.EV3_COLOR, port = Port.S1) # initialize the sensor

reflection = robot.sensors.light[Port.S1].reflection() # measure the light intensity

EV3 ULTRASONIC

from lib.robot_consts import Sensor, Port # import constants, sensor types...

robot.init_sensor(sensor_type = Sensor.EV3_ULTRA, port = Port.S1) # initialize the sensor

distance = robot.sensors.ultrasonic[Port.S1].distance() # measure the distance

EV3 GYROSCOPE (single axis)

from lib.robot_consts import Sensor, Port # import constants, sensor types...

robot.init_sensor(sensor_type = Sensor.EV3_GYRO, port = Port.S1) # initialize the sensor

robot.sensors.gyro[Port.S1].reset_angle(0) # reset angle

(angle, speed) = robot.sensors.gyro[Port.S1].angle_and_speed() # measure the angular velocity

in one axis and position

O-C OPTICAL see chapter 6.1 for other modes (color sensing, blue and green light - make POLICE car

beacon effect...)

from lib.robot_consts import Sensor, Port # import constants, sensor types...

robot.init_sensor(sensor_type = Sensor.OC_COLOR, port = Port.S1) # initialize the sensor

reflection = robot.sensors.light[Port.S1].reflection() # measure the reflected red light intensity

O-C LASER see chapter 6.2

from lib.robot_consts import Sensor, Port # import constants, sensor types...

robot.init_sensor(sensor_type = Sensor.OC_LASER, port = Port.S1) # initialize the sensor

distance = robot.sensors.laser[Port.S1].distance() # measure the distance

O-C ULTRASONIC see chapter 6.3

from lib.robot_consts import Sensor, Port # import constants, sensor types...

robot.init_sensor(sensor_type = Sensor.OC_ULTRASONIC, port = Port.S1) # initialize the sensor

distance = robot.sensors.ultrasonic[Port.S1].distance() # measure the distance

O-C AHRS see chapter 6.4

from lib.robot_consts import Sensor, Port # import constants, sensor types...

robot.init_sensor(sensor_type = Sensor.OC_GYRO, port = Port.S1) # initialize the sensor

euler_angles = robot.sensors.gyro[Port.S1].euler_angles() # read the data (more and calibration

in chapter 6.4)

INTERNAL GYROSCOPE see chapter 3.6 for example of sensor readout using interrupts

robot.init_sensor(sensor_type = Sensor.GYRO_ACC)

a_g_data = (0, 0, 0, 0, 0, 0) # ax:-, ay:-, az:-, gx:°/s, gy:°/s, gz:°/s

a_g_data = robot.sensors.gyro_acc.read_value() # measure the accelerations and angular rates

MISCELLANEOUS

DISPLAY see chapter 3.5 for complete list of functions

robot.display.fill(0) # clear display

robot.display.text("test message",0,0,1) # print text

x, y = 1.23, 56.789 # set some variables

robot.display.text(f"x={x:.2 f}, y: {y:.2f}", 0, 10, 1) # print two float numbers

robot.display.show() # show the framebuffer

SOUND - PIEZO

robot.buzzer.set_freq_duty(4000,50) # 4000 Hz, 50 % duty

robot.buzzer.off() # stop the PWM generation

BUTTONS

from lib. robot_consts import Button # import constants, sensor types...

buttons = robot.buttons.pressed() # read the state

if buttons[Button.LEFT]: break # use it in an if condition

other buttons: Button.LEFT, Button.RIGHT, Button.OK, Button.UP, Button.DOWN

LED (red, on the Open-Cube front panel)

robot.led.on() # switch LED on

robot.led.off() # switch LED off

BATTERY

voltage = robot.battery.voltage() #read the internal O-C Li-ion battery voltage

I2C MASTER, I2C SLAVE (Open-Cube control, or general usage), see chapter 3.7 and 3.8

BLUETOOTH serial communication & Wi-Fi access point – see chapter 3.7

MicroPython also supports:

if x < 9: while x < 9: for y in range(0, 9):

print("debug message!") # print debug message into Thonny console

def add(number1, number2): return number1 + number2 # function definition

add(1, 2) # function usage

send_data = 0.1 #create some variable

buffer = "Values: " + str(send_data) + "," + str(-send_data) + ";" # Values: 0.1,-0.1;

print(buffer) #Print the string to PC

or

robot.esp.bt_write(buffer) # or send it via Bluetooth

Want to see time-plots of some variables? Look for “DataPlotter”

https://github.com/jirimaier/DataPlotter nice program created by CTU-FEE student Jiri Maier

buffer = "$$P"+str(send_data)+","+str(-send_data)+";"

robot.esp.bt_write(buffer) #more info in bt_serial.py in your Open-Cube or at gitlab

“$$P” is a specific header to add one point into a graph, see DataPlotter documentation

Open-Cube

CTU FEE

2024

Contents

1 Firmware installation 4

2 Thonny IDE 4
2.1 Recommended settings . 4
2.2 Uploading code to the cube . 4
2.3 Run the program independently . 5

3 Robot 6
3.1 Buttons . 8
3.2 LED . 9
3.3 Buzzer . 9
3.4 Battery . 10
3.5 Display . 11
3.6 Gyroscope and accelerometer . 15
3.7 I2C master . 17
3.8 I2C slave . 19
3.9 ESP32 communication . 20

3.9.1 Bluetooth ESP32 connection with external device 20
3.9.2 Cube . 23
3.9.3 Remote control of the cube . 26
3.9.4 Wireless program launch . 27
3.9.5 Serial Bluetooth Terminal . 27
3.9.6 Matlab . 27
3.9.7 Simulink . 28

4 NXT sensors 32
4.1 Touch sensor . 32
4.2 Light sensor . 32
4.3 Ultrasonic sensor . 34
4.4 Sound sensor . 35

1

5 EV3 sensors 36
5.1 Touch sensor . 36
5.2 Color sensor . 36
5.3 Ultrasonic sensor . 38
5.4 Infrared sensor . 38
5.5 Gyroscopic sensor . 39

6 Open-Cube sensors 41
6.1 Color sensor . 41
6.2 Laser distance sensor . 43
6.3 Ultrasonic sensor . 44
6.4 AHRS sensor . 44

7 Motor 46

8 Parameters and constants 49
8.1 Sensor . 49
8.2 Port . 50
8.3 Button . 50
8.4 Light . 51
8.5 GyroAcc . 51
8.6 Color . 52

9 Useful MicroPython functions 53
9.1 Information printing . 53
9.2 Random number generation . 53
9.3 Time . 54
9.4 Binary data manipulation . 55
9.5 Multi-core programming . 55

10 Used Python terms 56

2

List of codes

1 Run the program independently. 5
2 Using the global robot variable. 7
3 Checking the status of the buttons. 8
4 LED usage. 9
5 Buzzer usage. 10
6 Determining battery voltage. 10
7 Display usage. 14
8 Getting raw data and cube orientation from gyroscope and accelerometer. 16
9 Using the cube for multi-cube communication as an I2C master. 18
10 Using the cube for multi-cube communication as an I2C slave. 19
11 Communication between the micro controller and ESP32. 25
12 Communication with the cube using Matlab. 27
13 NXT Touch Sensor usage. 32
14 NXT Light Sensor usage. 34
15 NXT Ultrasonic Sensor usage. 34
16 NXT Sound Sensor usage. 35
17 EV3 Touch Sensor usage. 36
18 EV3 Color Sensor usage. 37
19 EV3 Ultrasonic sensor usage. 38
20 EV3 Infrared Sensor usage. 39
21 EV3 Gyro Sensor usage. 40
22 Open-Cube Color Sensor usage. 42
23 Open-Cube LIDAR usage. 43
24 Open-Cube Ultrasonic sensor usage. 44
25 Open-Cube AHRS sensor usage. 45
26 Motor usage. 48
27 Printing information. 53
28 Random library usage. 53
29 Time library usage. 54
30 Timer class usage. 54
31 Struct library usage. 55
32 thread library usage. 55

3

1 Firmware installation

The MicroPython firmware, along with all the Open-Cube libraries described in this
document, is loaded in the cube by default for students. The current firmware can also
be downloaded at Open-Cube repository [https://gitlab.fel.cvut.cz/open-cube/firmware/
] from the micropython folder. To upload firmware after an update, or to upload firmware
to a new cube, follow these steps:

1. Download firmware [https://gitlab.fel.cvut.cz/open-cube/firmware/-/tree/main/
micropython/] (uf2 binary file) with Open-Cube firmware.

2. Connect the cube to the computer using a USB cable.

3. Hold the boot select button and press the power button.

4. Open the RPI-RP2 directory on your computer and copy the downloaded firmware
into it.

5. After uploading the firmware, the cube restarts, the display shows the menu.

2 Thonny IDE

For editing, debugging and uploading code to the cube, we recommend using the Thonny
IDE [https://thonny.org/], which is available for Windows, Mac and Linux.

2.1 Recommended settings

When the editor is started for the first time with the cube connected and running, click
the button in the bottom right corner, then click on Configure interpreter..., choose
Interpreter and set the interpreter to MicroPython (Raspberry Pi Pico). It is also
recommended to choose General and set the option UI mode to regular or expert.
In the main Thonny window click on View and choose Files and Shell. The Files
window is used to browse directories on the computer and the Shell window is used to
communicate with the cube, display information and error messages.

2.2 Uploading code to the cube

After connecting the switched on cube with a USB cable to the computer, press the
Stop/Restart backend button in the editor to connect to the cube. The Shell box
will display the connection information and the Files box will display the files loaded in
the cube. You can copy files and entire directories between the cube and the computer
by right-clicking a file or a directory. Similarly, you can delete or create new files and
directories.

You can edit files in both the computer directory and the cube directory. If you open
a file in the cube and save it after editing, it will automatically be loaded into the cube.

Upload user programs to the programs directory in the cube. A program can be a
single file with the .py extension, or a directory containing a user file main.py. Programs
uploaded in this way will appear in the cube menu. The displayed program name is

4

https://gitlab.fel.cvut.cz/open-cube/firmware/
https://gitlab.fel.cvut.cz/open-cube/firmware/
https://gitlab.fel.cvut.cz/open-cube/firmware/-/tree/main/micropython/
https://gitlab.fel.cvut.cz/open-cube/firmware/-/tree/main/micropython/
https://gitlab.fel.cvut.cz/open-cube/firmware/-/tree/main/micropython/
https://thonny.org/
https://thonny.org/
https://thonny.org/

determined by the name of the file without the .py extension or the name of the directory
containing main.py file.

After editing the code in the editor, you can press Run current script to run the
code currently displayed in the editor on the cube. It is recommended to run only the
main program main.py in this way, which contains the cube framework with all the
necessary functions for controlling the peripherals initialized. When the main program
is run, a menu controlled by the buttons on the cube is displayed with the option to run
the loaded user program. The main.py file runs automatically when the cube is turned
on.

2.3 Run the program independently

To speed up testing, the user program can be run independently without starting the
main program:

1 # Importing the Robot class
2 from lib.robot import *
3

4 # If the program is run from the menu , nothing happens
5 # If it is run independently , the robot variable is initialized
6 global robot
7 try:
8 robot
9 except:

10 robot = Robot ()
11 .
12 .
13 .
14 # When the program exits , the cube can be reset to return to the menu
15 import machine
16 machine.reset ()

Code 1: Run the program independently.

5

3 Robot

When the cube is turned on, main program main.py initialises a global object robot. This
object contains all functions for initializing, deinitializing and accessing cube peripheral
objects. The functions are described in the following sections. The structure of the
variables of the robot object that can be used to access the peripheral objects is as
follows:

robot
battery
buttons
buzzer
display
esp
led
motors[4]
sensors

ultra nxt
gyro acc
touch[4]
light[4]
sound[4]
ultrasonic[4]
gyro[4]
infrared[4]
laser[4]

class Robot()

Initialization, deinitialization and management of motor, sensor and cube peripheral
objects. Automatically initializes cube buttons, LED, buzzer and battery voltage
measurement with undervoltage protection. Sensors, motors and ESP32 Bluetooth
communication can be initialized by the user.
Initialization: Turning on the cube.
Deinitialization: Turning off the cube.
Access: robot

init sensor(sensor type=None, port=None)

Sensor initialization.
Parameters: sensor type (Sensor) – Sensor type.

port (Port) – Sensor port. No need to specify for sensor
types Sensor.GYRO and Sensor.ULTRA.

deinit sensor(sensor type=None, port=None)

Sensor deinitialization.
Parameters: sensor type (Sensor) – Sensor type.If not specified, deini-

tializes any sensor on that port.
port (Port) – Sensor port. If not specified, deinitializes all
sensors of given type.

6

init motor(port=None)

Motor initialization.
Parameters: port (Port) – Motor port.

deinit motor(port=None)

Motor deinitialization. Shuts down the controller, encoder capture, and stops
the motor.
Parameters: port (Port) – Motor port.

The following code demonstrates the use of the robot class on a simple program for
flashing the cube LED. When this program is run from the menu, the LED changes state
periodically every second. When the left button is pressed, the program is terminated,
the display shows the menu again, and you can start another program.

1 # Import sleep function
2 from time import sleep
3 # Import cube button constants
4 from lib.robot_consts import Button
5

6 # Program definition
7 def main:
8 # Access the global variable robot
9 global robot

10

11 # Loop waiting for program termination
12 while True:
13 # Change LED state
14 robot.led.toggle ()
15

16 # Get buttons state
17 buttons = robot.buttons.pressed ()
18 # Terminate program when left button is pressed
19 if buttons[Button.LEFT]:
20 break
21

22 # Wait 1 second
23 sleep (1)
24

25 # Start program
26 main()

Code 2: Using the global robot variable.

7

3.1 Buttons

class Buttons()

Information about the state of the buttons on the front panel of the cube. If the
cube does not turn itself off after briefly pressing the POWER button, it can be
turned off by long pressing this button to disconnect the cube from the power
supply.
Initialization: Turning on the cube.
Deinitialization: Turning off the cube.
Access: robot.buttons

pressed()

Returns current state of the buttons. To find out the status of a specific
button, you can use buttons constants.
Returns: Tuple of states of the buttons (power, left, right, ok, up,

down). True if the button is pressed, False if not.
Type: (bool, bool, bool, bool, bool, bool)

1 # Import sleep function
2 from time import sleep
3 # Import cube button constants
4 from lib.robot_consts import Button
5

6 def main:
7 global robot
8 while True:
9 # Get buttons state

10 buttons = robot.buttons.pressed ()
11

12 # Show buttons state in terminal
13 print("Button pressed:",
14 "power:", buttons[Button.POWER],
15 "left:", buttons[Button.LEFT],
16 "right:", buttons[Button.RIGHT],
17 "OK:", buttons[Button.OK],
18 "up:", buttons[Button.UP],
19 "down:", buttons[Button.DOWN])
20 # Terminate program when left button is pressed
21 if buttons[Button.LEFT]:
22 break
23 # Wait 1 second
24 sleep (1)
25

26 # Start program
27 main()

Code 3: Checking the status of the buttons.

8

3.2 LED

class Led()

Switching on and off the red LED on the front panel of the cube.
Initialization: Turning on the cube.
Deinitialization: Turning off the cube.
Access: robot.led

on()

Turn on LED.

off()

Turn off LED.

toggle()

Change LED state.

1 # Turn on LED
2 robot.led.on()
3 # Turn off LED
4 robot.led.off()

Code 4: LED usage.

3.3 Buzzer

class Buzzer()

Controlling the cube buzzer. The buzzer has the highest volume at a frequency
of approximately 4500 Hz due to the uneven frequency characteristic of the piezo
transducer. The volume can be further adjusted by turning the resistive trimmer
on the front panel of the cube.
Initialization: Turning on the cube.
Deinitialization: Turning off the cube.
Access: robot.buzzer

set freq duty(freq, duty)

Set the PWM controlling the buzzer to the desired frequency and duty cycle.
Parameters: • freq (frekvence: Hz) – PWM frequency.

• duty (střída:%) – PWM duty cycle.

off()

Turn off buzzer.

9

1 # Turning on the buzzer at 4000 Hz and 50% duty cycle
2 robot.buzzer.set_freq_duty (4000, 50)
3 # Change buzzer frequency to 1000 Hz
4 robot.buzzer.set_freq_duty (1000, 50)
5 # Turn off buzzer
6 robot.buzzer.off()

Code 5: Buzzer usage.

3.4 Battery

class Battery()

Voltage measurement on the power supply batteries. During initialization, a timer
is set with a 200 ms period to start the voltage measurement.

The Open-Cube is powered by two Li-ion batteries (nominal voltage of one cell is
3.7 V, maximum charging voltage is 4.2 V, discharging below 3 V already shortens
the cell lifetime). In case of full charge, 8.2–8.4 V can be measured. Batteries should
not be discharged below 6 V. The firmware switches off the cube when voltage drops
below 6.5 V. Hardware undervoltage protection disconnects batteries when voltage
drops below 5.8 V.
Initialization: Turning on the cube.
Deinitialization: Turning off the cube.
Access: robot.battery

voltage()

Returns the last measured battery voltage.
Returns: Last measured battery voltage.
Type: float: V

read voltage()

Measure battery voltage.
Returns: Measured battery voltage.
Type: float: V

deinit()

Disable periodic battery voltage measurement.

1 # Determine battery voltage in volts
2 voltage = robot.battery.voltage ()

Code 6: Determining battery voltage.

10

3.5 Display

class SH1106 I2C()

Show text, geometric shapes and graphs on the display. The activation of individual
pixels is written to the frame buffer, which is transferred to the display using the
show command. The display is black and white and the resolution is 128x64 pixels.
Initialization: Turning on the cube.
Deinitialization: Turning off the cube.
Access: robot.display.

show()

Show current frame buffer on the display.

fill(color)

Fill entire frame buffer with specified color.
Parameters: color (0/1) – Color – 0 black, 1 white.

pixel(x, y [, color])

Set a pixel in the frame buffer to the specified color. If color is not specified,
returns the color of pixel.
Parameters: • x, y – Pixel coordinates.

• color (0/1) – Color – 0 black, 1 white.
Returns: Pixel color.
Type: int (0/1)

hline(x, y, w, color)

Draw horizontal line to the frame buffer.
Parameters: • x, y – Coordinates of left origin of the line

• w – Line width.
• color (0/1) – Color – 0 black, 1 white.

vline(x, y, h, color)

Draw vertical line to the frame buffer.
Parameters: • x, y – Coordinates of upper origin of the line.

• h – Line height.
• color (0/1) – Color – 0 black, 1 white.

line(x1, y1, x2, y2, color)

Draw line to the frame buffer.

11

Parameters: • x1, y1 – Coordinates of first origin of the line.
• x2, y2 – Coordinates of second origin of the line.
• color (0/1) – Color – 0 black, 1 white.

rect(x, y, w, h, color)

Draw rectangle to the frame buffer.
Parameters: • x, y – Coordinates of the upper left corner of the rectangle.

• w, h – Rectangle width and height.
• color (0/1) – Color – 0 black, 1 white.

fill rect(x, y, w, h, color)

Draw filled rectangle to the frame buffer.
Parameters: • x, y – Coordinates of the upper left corner of the rectangle.

• w, h – Rectangle width and height.
• color (0/1) – Color – 0 black, 1 white.

ellipse(x, y, xr, yr, color, f=False, m=1111b)

Draw ellipse to the frame buffer.
Parameters: • x, y – Coordinates of center of the ellipse.

• xr, yr – Ellipse axes length.
• color (0/1) – Color – 0 black, 1 white.
• f (bool) – Fill the ellipse if the parameter is specified and
is True.
• m (4 bits) – Restriction of ellipse drawing to specified
quadrants. Bit 0 specifies Q1, b1 Q2, b2 Q3 and b3 Q4.
Quadrants are numbered counterclockwise and Q1 is the
upper right quadrant.

fill rect(x1, y1, x2, y2, x3, y3, color)

Draw filled triangle to the frame buffer.
Parameters: • x1, y1, x2, y2, x3, y3 – Coordinates of triangle corners.

• color (0/1) – Color – 0 black, 1 white.

text(s, x, y, color=1)

Draw text to the frame buffer. Characters are 8x8 pixels in size. Only one
font is available.
Parameters: • s (str) – Text.

• x, y – Coordinates of the upper left corner of the text
beginning.
• color (0/1) – Color – 0 black, 1 white.

centered text(s, y, color=1)

12

Draw centered text to the frame buffer. Characters are 8x8 pixels in size. Only
one font is available.
Parameters: • s (str) – Text.

• x – Coordinate of the upper border of the text.
• color (0/1) – Color – 0 black, 1 white.

draw bar chart v(value, x, y, w, h, low lim=0, high lim=100,
no of tics=5, label=None, redraw=False)

Draw vertical bar chart to the frame buffer.
Returns: Redraw chart to reduce flickering.
Type: bool
Parameters: • value (float) – Displayed value.

• x, y (int) – Coordinates of the lower left corner of the
beginning of the bar chart.
• w, h (int) – Bar chart width and height.
• low lim, high lim (int) – Lower and upper constraints
of the bar chart.
• no of tics (int) – Number of chart divisions for better
readability. Recommended maximum value is 5
• label (str) – Chart label.
• redraw (bool) – Chart redraw.

draw bar chart h(value, x, y, w, h, low lim=0, high lim=100,
no of tics=5, label=None, redraw=False)

Draw horizontal bar chart to the frame buffer.
Returns: Redraw chart to reduce flickering.
Type: bool
Parameters: • value (float) – Displayed value.

• x, y (int) – Coordinates of the lower left corner of the
beginning of the bar chart.
• w, h (int)– Bar chart width and height.
• low lim, high lim (int) – Lower and upper constraints
of the bar chart.
• no of tics (int) – Number of chart divisions for better
readability. Recommended maximum value is 5
• label (str) – Chart label.
• redraw (bool) – Chart redraw.

draw dial(value, x, y, r, loval, hival, no of steps, label, redraw)

Draw dial to the frame buffer.

13

Returns: Redraw dial to reduce flickering.
Type: bool
Parameters: • value (float) – Displayed value.

• x, y (int) – Dial center coordinates.
• r (int)– Dial radius.
• loval, hival (int) – Lower and upper constraints of the
dial.
• no of steps (int) – Number of dial divisions. Recom-
mended maximum value is 10.
• label (str) – Dial label.
• redraw (bool) – Dial redraw.

continuous graph(x, y, gx, gy, w, h, xlo, xhi, ylo, yhi, label,
redraw)

Draw continuous graph to the frame buffer. The function internally maintains
graph data points. When the width of the graph is filled, the previous data
points are removed and the graph is redrawn from the beginning.
Returns: Redraw chart to reduce flickering.
Type: bool
Parameters: • x, y (float) – Data point to be shown.

• gx, gy (int) – Coordinates of the lower left corner of the
graph.
• w, h (int) – Graph width and height.
• xlo, xhi (int) – Lower and upper constraints of the x axis.
• ylo, yhi (int) – Lower and upper constraints of the y axis.
• label (str) – Graph label.
• redraw (bool) – Graph redraw.

1 # Delete frame buffer
2 robot.display.fill (0)
3 # Draw text to the upper left corner of the frame buffer
4 robot.display.text("test message", 0, 0, 1)
5

6 # Writing numbers with precision of 2 decimal places to the frame
buffer on the next line

7 x, y = 1.23, 56.789
8 robot.display.text(f"x={x:.2f}, y: {y:.2f}", 0, 10, 1)
9 # Show frame buffer on the display

10 robot.display.show()
11

12 # Functions that return redraw value to reduce graph flicker should be
called in the loop as follows

13 redraw = True
14 while(True):
15 redraw = robot.display.draw_dial (50 ,128/2 ,40 ,20 ,0 ,100 ,10 ,270 ,

"Speedometer",redraw)

Code 7: Display usage.

14

3.6 Gyroscope and accelerometer

class ICM42688()

Integrated gyroscope and accelerometer ICM42688.

Measurement of acceleration and angular velocity in three axes. Sensor data fusion
to obtain cube orientation – Euler angles and quaternions.
Initialization: robot.init sensor(sensor type=Sensor.GYRO ACC)
Deinitialization: robot.deinit sensor(sensor type=Sensor.GYRO ACC)
Access: robot.sensors.gyro acc

raw()

Returns the last measured angular velocity and acceleration values. The Gy-
roAcc constants of the gyroscope and accelerometer can be used to find a
specific value.
Returns: Tuple of accelerations and angular velocities in the x, y, z

axes.
Type: (a x: -, a y: -, a z: -, g x: °/s, g y: °/s, g z: °/s)

euler angles()

Returns the orientation of the cube in Euler angles. The fusion algorithm must
be on.
Returns: Tuple of Euler angles yaw, pitch roll.
Type: (yaw: °, pitch: °, roll: °)

quaternions()

Returns the orientation of the cube in quaternions. The fusion algorithm must
be on.
Returns: Tuple of quaternions.
Type: (w, x, y, z)

start fusion()

Turns on the accelerometer and gyroscope data fusion algorithm to obtain
Euler angles and quaternions.

stop fusion()

Turns off the accelerometer and gyroscope data fusion algorithm.

reset fusion()

Resets the current cube orientation (Euler angles are zero and quaternion is
identity).

15

Figure 1: Orientation of integrated gyroscope and accelerometer axes.

Example of getting raw data and cube orientation from gyroscope and accelerometer:
1 # Importing libraries
2 from time import sleep
3 # Importing constants
4 from lib.robot_consts import Button , Sensor , GyroAcc
5

6 # Initializing sensor and data fusion algorithm
7 robot.init_sensor(sensor_type=Sensor.GYRO_ACC)
8 robot.sensors.gyro_acc.start_fusion ()
9

10 # Loop waiting for the program to exit
11 while True:
12 # Display the last acceleration and angular velocity values
13 a_g_data = robot.sensors.gyro_acc.raw()
14 print("Acc:",
15 a_g_data[GyroAcc.AX],
16 a_g_data[GyroAcc.AY],
17 a_g_data[GyroAcc.AZ],
18 "Gyro:",
19 a_g_data[GyroAcc.GX],
20 a_g_data[GyroAcc.GY],
21 a_g_data[GyroAcc.GZ])
22

23 # Display the orientation of the cube
24 euler_angles = robot.sensors.gyro_acc.euler_angles ()
25 print("Yaw:", euler_angles [0],
26 "Pitch:", euler_angles [1],
27 "Roll:", euler_angles [2])
28

29 # Get button state
30 buttons = robot.buttons.pressed ()
31 # Exit the program if the left button is pressed
32 if buttons[Button.LEFT]:
33 break
34 # Put the program to sleep for 1 second
35 sleep (1)
36

16

37 # Deinitialize sensor
38 robot.deinit_sensor(sensor_type=Sensor.GYRO_ACC)

Code 8: Getting raw data and cube orientation from gyroscope and accelerometer.

3.7 I2C master

class I2C master()

Set the cube as I2C master device for multi-cube communication. Cubes can be
connected using the I2C port (NXT UTZ port) and a modified cable. For proper
operation one cube must be set as I2C master and the others as I2C slave. The I2C
master reads or writes data to the 252 I2C slave registers.
Initialization: robot.init i2c master()
Deinitialization: robot.deinit i2c master()
Access: robot.i2c master

read(slave add, len=1, mem add=None)

Read data from I2C slave device.
Parameters: slave add (8-119) – Address of the I2C slave device.

len (int) – Number of registers (bytes) to read.
mem add (0-252) – Register address to read. If None, it is
read from the last address read or written.

Returns: Data from I2C slave device.
Type: bytes

write(slave add, message, mem add=None)

Writes data to the I2C slave device.
Parameters: slave add (8-119)) – Address of the I2C slave device.

message (bytes) – Data to be written.
mem add (0-252) – Address of the register to read. If
None, writes from the last read or written address.

Returns: True if writing is successful, False if not.
Type: bool

trigger(time us, slave add, callback=None)

Sets the wake-up time for the I2C slave device. The I2C slave must have a
callback function set in advance.
Parameters: time us (int) – Time (us) after which the set callback func-

tion will be called.
slave add (8-119) – Address of the I2C slave device.
callback (callable) – Callback function that is called in the
I2C master device after the specified time has elapsed.

Returns: True if the setting is successful, False if not.
Type: bool

17

trigger all(time us, slave adds=None, callback=None)

Sets the wake-up of several I2C slave devices. I2C slaves must have callback
functions set in advance.
Parameters: time us (int) – Time (us) after which the set callback func-

tion will be called.
slave adds (list) – List of I2C slave device addresses. If
None, performs an I2C bus scan and sets the trigger for all
devices found.
callback (callable) – Callback function that is called in the
I2C master device after the specified time has elapsed.

Returns: True if the setting is successful, False if not (for example,
if the selected time for calling the callback function is too
short).

Type: bool

scan()

Performs a scan of the I2C bus.
Returns: A list of I2C slave device addresses available on the I2C bus.
Type: list

1 # Initialize the cube as an I2C master
2 robot.init_i2c_master ()
3

4 # Scan the I2C bus to obtain all I2C slave device addresses
5 all_adds = robot.i2c_master.scan()
6

7 # Write and read the character "a" (97) to the I2C slave device with
address 10 in register 1

8 robot.i2c_master.write(10, (97).to_bytes(1, ’little ’), mem_add =1)
9 data_read = robot.i2c_master.read(10, 1, mem_add =1)

10 print(chr(int.from_bytes(data_read , ’little ’))) # "a"
11

12 # Callback function for synchronization between cubes
13 def master_trigger_callback(timer):
14 robot.led.on()
15

16 # Set trigger in all found I2C slave devices in 1 s (1000000 us)
17 robot.i2c_master.trigger_all (1000000 , slave_adds=all_adds , callback=

master_trigger_callback)
18

19 # Deinitialize I2C master
20 robot.deinit_i2c_master ()

Code 9: Using the cube for multi-cube communication as an I2C master.

18

3.8 I2C slave

class I2C slave()

Set the cube as an I2C slave device for multi-cube communication. Cubes can be
connected using the I2C port (NXT UTZ port) and a modified cable. For proper
operation one cube must be set as I2C master and the others as I2C slave. The I2C
master reads or writes data to the 252 I2C slave registers.

The address of the I2C slave device can be selected in the range 7-119.
Initialization: robot.init i2c slave(address)
Deinitialization: robot.deinit i2c slave()
Access: robot.i2c slave

read(mem add)

Reads the register.
Parameters: mem add (0-251) – Address of the register to read.
Returns: Data from the register.
Type: int

read all()

Reads all registers.
Returns: List with data from registers.
Type: list

write(mem add, data)

Writes to the register.
Parameters: mem add (0-251) – Address of the register to write to.

data (0-255) – Data to write.

irq(handler=None, trigger=0)

Sets the interrupt handler function.
Parameters: handler (callable) – Callback function, must have one input

argument for the I2C slave instance.
trigger (0-7) – Event mask at which the handler function
is called.
robot.i2c slave.RECEIVED – I2C master wrote data to the
register.
robot.i2c slave.READ – I2C master read data from the
register.
robot.i2c slave.TRIGGER – I2C master trigger.

1 # Initialize the cube as an I2C slave with address 10
2 robot.init_i2c_slave (10)
3

4 # Callback function for responding to events
5 def slave_callback(i2c_slave):

19

6 flags = i2c_slave.irq().flags()
7 if (flags & i2c_slave.RECEIVED):
8 print("new data received")
9 if (flags & i2c_slave.READ):

10 print("master read data")
11 if (flags & i2c_slave.TRIGGER):
12 robot.led.on()
13

14 # Set interrupt handler for all three possible events
15 flags = robot.i2c_slave.RECEIVED | robot.i2c_slave.READ | robot.

i2c_slave.TRIGGER
16 robot.i2c_slave.irq(handler=slave_callback , trigger=flags)
17

18 # Write and read the character "b" (98) to register 2
19 robot.i2c_slave.write(2, 98)
20 data_received = robot.i2c_slave.read (2)
21 print(chr(data_received)) # "b"
22

23 # Deinitialize I2C slave
24 robot.deinit_i2c_slave ()

Code 10: Using the cube for multi-cube communication as an I2C slave.

3.9 ESP32 communication

ESP32 communicates with the cube (RP2040) via serial link. It can communicate with
other devices via Wi-Fi or Bluetooth. The ESP is programmable by connecting a USB
cable on the top of the cube. The default firmware of the ESP (available from the
Open-Cube repository [https://gitlab.fel.cvut.cz/open-cube/firmware/-/tree/main/ESP
]) allows in Bluetooth mode to forward data from the cube via Bluetooth virtual COM
port to a computer or mobile phone and in Wi-Fi mode acts as an access point with a
web server with versatile controls (buttons, switches, indicators).

3.9.1 Bluetooth ESP32 connection with external device

Communication is serial via Bluetooth virtual COM port and has been tested for Win-
dows, Ubuntu, and Android. To pair, the cube must be turned on in the BT pair menu.
The device name will appear on the display.

• Windows:

1. In the Bluetooth settings, select Add new device, then Bluetooth, and pair the
computer with the cube. See figure 2.

2. Confirm the PIN on the cube and on the computer.

3. To find the COM port number, go to the advanced Bluetooth settings. The
required COM port has a name containing ESP32SPP and the direction Out-
going. See figure 3. This COM port is used for both receiving and sending
data.

• Ubuntu:

1. In the Bluetooth settings, select the Open-Cube device and pair the computer
with the cube.

20

https://gitlab.fel.cvut.cz/open-cube/firmware/-/tree/main/ESP
https://gitlab.fel.cvut.cz/open-cube/firmware/-/tree/main/ESP

2. Confirm the PIN on the cube and on the computer.

3. Display the device details and copy its MAC address.

4. Create a serial port link: sudo rfcomm bind /dev/rfcomm0 XX:XX:XX:XX:XX:XX.

5. Open the serial port, for example, with the command screen /dev/rfcomm0

• Android:

1. In the Bluetooth settings, select the Open-Cube device and pair your phone
with the cube.

2. Confirm the PIN on the cube and on your phone.

Figure 2: Pairing with cube on Windows.

21

Figure 3: Determining the COM port number

22

3.9.2 Cube

class ESP()

Bidirectional data sending between microcontroller and ESP32 via UART interface.
At initialization, a timer with a 10 ms period is started, during which the data sent
by the ESP is received and stored.

ESP can operate in two modes – Bluetooth and Wi-Fi access point.

1. In the case of Bluetooth mode, data is sent in messages. Sending and receiving
data can be done in ASCII or in binary mode.
ASCII mode: The message being sent is terminated by the LF (new line)
terminator. When receiving data, the message is available after receiving the
LF or CR terminator.
Binary mode: For communication, it is necessary to specify the header of the
data being sent and received to distinguish the beginning of the message. In
order to correctly receive the message and determine the end of the message,
the size of the message in bytes must be pre-specified. The data is of type
bytes and its interpretation is up to the user.

2. Wi-Fi access point mode with web server provides versatile controls – buttons,
switches and indicators.

Initialization: Turning on the cube.
Deinitialization: Turning off the cube.
Access: robot.esp

reset()

Reset the ESP and set Bluetooth mode.

bt()

Set Bluetooth mode

wifi()

Set Wi-Fi access point mode. The default ESP address is 192.168.4.1. Indexing
of configurable web server controls is shown in image 4.

set name(name)

Set ESP name for both Bluetooth and Wi-Fi. Default name is "OPEN-
CUBE".
Parameters: name (str) – ESP name.

set password(password)

Set ESP Wi-Fi passwords. Password must be at least 8 characters. Default
password is "12345678".
Parameters: password (str) – ESP password.

23

bt read()

Return last received message in Bluetooth mode.
Returns: Received message. If no new message available: None.
Type: • ASCII mode: str

• Binary mode: bytes

bt write(buff)

Send message in Bluetooth mode.
Parameters: buff (buffer: str(ASCII)/bytes(binary)) – Buffer of data to

be sent.

bt set binary(header, data size)

Set Bluetooth mode to binary mode if header is specified and to ASCII mode
if header is None.
Parameters: header (tuple) – Header containing numbers

0–255, or None.
data size (int) – Received message size in bytes.

wifi get buttons()

Return state of 9 web server buttons in Wi-Fi access point mode.
Returns: Tuple of buttons state..
Type: 9x bool

wifi get switches()

Return state of 5 web server switches in Wi-Fi access point mode.
Returns: Tuple of switches state.
Type: 5x bool

wifi set indicators(indicators)

Set state of 9 web server indicators in Wi-Fi access point mode.
Parameters: indicators (tuple) – 5x bool of indicators state.

wifi set numbers(numbers)

Set state of 6 web server numbers in Wi-Fi access point mode.
Parameters: indicators (tuple) – 6x float.

wifi set buttons labels(labels)

Set label of 9 web server buttons in Wi-Fi access point mode. String of each
button can have a maximum length of 9 characters and an empty string hides
the button.
Parameters: labels (tuple) – 9x str buttons label.

wifi set switches labels(labels)

24

Set label of 9 web server switches in Wi-Fi access point mode. String of each
switch can have a maximum length of 9 characters and an empty string hides
the switch.
Parameters: labels (tuple) – 5x str switches label.

wifi set indicators labels(labels)

Set label of 5 web server indicators in Wi-Fi access point mode. String of each
indicator can have a maximum length of 9 characters and an empty string
hides the indicator.
Parameters: labels (tuple) – 5x str indicators label.

wifi set numbers labels(labels)

Set label of 6 web server numbers in Wi-Fi access point mode. String of each
number can have a maximum length of 9 characters and an empty string hides
the number.
Parameters: labels (tuple) – 6x str numbers label.

Example of using communication between the micro controller and ESP32:
1 # Import library for working with binary data
2 import struct
3

4 # Send and receive a string message in Bluetooth ASCII mode
5 robot.esp.bt_write("test message")
6 received_message = robot.esp.bt_read ()
7

8 # Send and receive a message of 8 bytes in Bluetooth binary mode
9 robot.esp.bt_set_binary ((112, 241, 3, 62), 8)

10 # Create and send a message with two numbers of type single (4 bytes
each)

11 write_message = struct.pack("<ff", 521.9 , -11.821)
12 robot.esp.bt_write(write_message)
13 # Receive and decode a message containing two numbers of type single
14 received_message2 = robot.esp.bt_read ()
15 (value1 , value2) = struct.unpack("<ff", received_message2)
16

17 # Switch ESP to Wi -Fi access point mode
18 robot.esp.wifi()
19 # Set labels of indicators
20 robot.esp.set_indicators_labels (["1", "2", "3", "4", "5"])
21 # Get state of switches
22 switches = robot.esp.get_switches ()

Code 11: Communication between the micro controller and ESP32.

25

Figure 4: Indexing of ESP web server elements.

3.9.3 Remote control of the cube

If the cube is in the menu, Bluetooth communication can be used for remote control adn
running programs.

Control messages:

• oc l, oc r, oc u, oc d, oc o, oc ko – emulation of physical buttons on the cube
(left, right, up, down, ok, power),

• oc fw – the cube resets to bootload mode,

• oc rs – performs a software reset of the cube,

• oc run <program name> – runs the program with the given name,

• oc ping – sends back oc pong

26

3.9.4 Wireless program launch

By adding the Open-Cube plugin to the Thonny editor, you can wirelessly upload and
run programs:

1. Install the Open-Cube Thonny plugin.

2. Pair the cube with your computer (see 3.9.1).

3. In the Open-Cube Thonny plugin settings, select the cube’s COM port.

4. Press the OC Run button to upload and run the program.

5. Use the OC Stop button to stop the program if the Take control option is selected
in the plugin settings. At the same time, you can send messages to the Open-Cube
log window using robot.esp.bt write().

3.9.5 Serial Bluetooth Terminal

For a simple Bluetooth communication from your mobile phone you can use the app Se-
rial Bluetooth Terminal [https://play.google.com/store/apps/details?id=de.kai_morich.
serial_bluetooth_terminal]. This app allows you to send and receive messages from the
cube in Bluetooth ASCII mode.

3.9.6 Matlab

To communicate with the cube using Matlab, it is necessary to have the Communications
Toolbox installed. This interface uses Bluetooth SPP (Serial Port Profile) and allows you
to receive and send ASCII and binary data. When sending ASCII data, the message is
terminated with a terminator (LF or CF). In the case of binary data, the message is not
terminated with a terminator and both the cube and the Matlab program must know the
length of the message in advance in order to interpret messages correctly.

An example of using the interface is described in the following code. For more in-
formation on how to use the interface, see the official Bluetooth Communication docu-
mentation [https://www.mathworks.com/help/matlab/bluetooth-communication.html/
].

1 % Connecting the cube with Matlab
2 cube = bluetooth('OPEN -CUBE')
3 % Set LF (new line) terminator for sending and receiving

ASCII data
4 configureTerminator(device , 'LF')
5 %%
6 % Send a test message to the cube in Bluetooth ACII mode. The

message is automatically terminated by the set terminator
.

7 writeline(cube , 'test message ')
8 % Receiving a message from the cube. The function receives

data and waits for termination by previously set
terminator.

9 cube_message = readline(cube)
10 %%

27

https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal
https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal
https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal
https://play.google.com/store/apps/details?id=de.kai_morich.serial_bluetooth_terminal
https://www.mathworks.com/help/matlab/bluetooth-communication.html/
https://www.mathworks.com/help/matlab/bluetooth-communication.html/
https://www.mathworks.com/help/matlab/bluetooth-communication.html/

11 % Send a test message to the cube in Bluetooth binary mode.
The message is interpreted as a string format and is not
terminated by a terminator.

12 write(cube , 'test message ', 'string ')
13 % Receive a message from the cube. The message is 8 bytes

long and is interpreted as float.
14 cube_message2 = read(cube , 8, 'float')

Code 12: Communication with the cube using Matlab.

3.9.7 Simulink

For communication using Simulink it is necessary to have the Instrument Control Tool-
box installed. This toolbox provides blocks Serial Configuration, Serial Send and
Serial Receive for serial communication. When creating a new model, you need to
modify the simulation solver settings and set the serial communication parameters as
follows:

1. Click the button in the bottom right corner to set the solver to Fixed-Step, dis-
crete and Fixed-step size to a value according to the frequency of sending and
receiving data (e.g. 0.001). See image 5.

2. Click on the arrow below the Run button to enable Simulation Pacing. See images
6 and 7.

3. Create the Serial Configuration block in the model, in which set the COM port
found in 3.9.1 and other parameters according to image 8.

After this configuration it is possible to use the blocks Serial Send and Serial Re-
ceive for sending and receiving data. For additional information on how to use the
blocks, see v official documentation [https://www.mathworks.com/help/instrument/
direct-interface-communication-in-simulink.html].

An example of using serial communication to set the PID constants of a controller
running in the cube and display the current PID components is shown in image 9. In
this example, the values are sent and received in Bluetooth binary mode, the header for
sending and receiving is set, and used data type is single (4 bytes). Messages are received
every 0.01 seconds, which is set in the Serial Send block in the Block sample time
cell. Messages are sent every second, which is set in the Block sample time cell of the
three Constant blocks. Set Fixed-step size of the solver should be smaller than the
Block sample time.

28

https://www.mathworks.com/help/instrument/direct-interface-communication-in-simulink.html/
https://www.mathworks.com/help/instrument/direct-interface-communication-in-simulink.html
https://www.mathworks.com/help/instrument/direct-interface-communication-in-simulink.html

Figure 5: Simulink solver configuration.

Figure 6: Location of Simulation pacing configuration in Simulink.

29

Figure 7: Simulink Simulation Pacing configuration.

Figure 8: Configuration of Serial Configuration block in Simulink.

30

Figure 9: Example of using serial communication in Simulink.

31

4 NXT sensors

4.1 Touch sensor

class TouchSensor(port)

NXT Touch Sensor.
Information about the button state.
Parameters: port (Port) – The port to which the sensor is connected.
Initialization: robot.init sensor(sensor type=Sensor.NXT TOUCH,-

port=Port).
Deinitialization: robot.deinit sensor(sensor type=Sensor.NXT TOUCH,-

port=Port).
Access: robot.sensors.touch[Port].

pressed()

Return button state.
Returns: True if the button is pressed, False if not.
Type: bool

1 # Import sensor and port constants
2 from lib.robot_consts import Sensor , Port
3

4 # Initialize NXT Touch Sensor on sensor port 1
5 robot.init_sensor(sensor_type=Sensor.NXT_TOUCH , port=Port.S1)
6

7 # Determine the button state
8 touch_pressed = robot.sensors.touch[Port.S1]. pressed ()

Code 13: NXT Touch Sensor usage.

4.2 Light sensor

class LightSensor(port)

NXT Ligth Sensor.
Measuring light intensity.
Measurement is possible in two modes – manual, in which the intensity is measured
on request, and continuous, in which the intensity is measured periodically and on
request the last measured value is returned. The continuous mode also provides non-
flashing and flashing modes. In the non-flashing mode, the intensity is measured
in the LED state previously set by the user. In the flashing mode, the intensity
is measured in both the off and on LED states. Changing the LED state is done
automatically and the last measured intensity for both LED states is available to
the user on request.
The ADC samples the signal with a period of 1 ms. Light intensity is obtained by
measuring the voltage on the sensor. When the LED state changes, this voltage
will stabilize in approximately 10 ms.

32

Parameters: port (Port) – The port to which the sensor is connected.
Initialization: robot.init sensor(sensor type=Sensor.NXT LIGHT,port=Port)
Deinitialization: robot.deinit sensor(sensor type=Sensor.NXT LIGHT,port=Port)
Access: robot.sensors.light[Port]

on()

Turn on sensor LED.

off()

Turn off sensor LED.

togggle()

Change state of sensor LED.

intensity(pin on)

Measure and return light intensity in manual mode.Return last measured light
intensity in continuous mode.

Parameters: pin on (bool) – Selection of the returned measured light
intensity. The value does not matter in manual mode and in
continuous non-flashing mode. In continuous flashing mode,
return the measured intensity when the LED is on for True
and when the LED is off for False.

Returns: Measured light intensity. 0 for the highest intensity, 32768
for the lowest.

Type: int (0–32768)

set continuous(period us, wait us)

Set sensor to continuous mode.
Parameters: • period us (int) – Time in µs between the start of the

analog value conversion and the reading of the converted
digital value from the ADC. Recommended minimum value
is 1100.
• wait us (int) – Waiting time in µs before starting a mea-
surement after LED state change. Recommended minimum
value is 10000.

stop continuous()

Set sensor to manual mode.

33

set switching()

Set sensor in continuous mode to continuous flashing mode.

stop switching()

Set sensor in continuous mode to continuous non-flashing mode.

1 # Import sensor and port constants
2 from lib.robot_consts import Sensor , Port
3

4 # Initialize NXT Light Sensor on sensor port 1
5 robot.init_sensor(sensor_type=Sensor.LIGHT , port=Port.S1)
6

7 # Turn on sensor LED
8 robot.sensors.light[Port.S1].on()
9 # Measure light intensity

10 light_intensity = robot.sensors.light[Port.S1]. intensity ()

Code 14: NXT Light Sensor usage.

4.3 Ultrasonic sensor

class UltrasonicSensor()

NXT Ultrasonic Sensor.

Measuring distance of an object from the sensor in the range 0–255 cm with an
accuracy of ±3 cm. The sensor must be connected to the cube port marked I2C,
multiple NXT Ultrasonic Sensor type sensors cannot be connected.
Initialization: robot.init sensor(sensor type=Sensor.NXT ULTRASONIC)
Deinitialization: robot.deinit sensor(sensor type=Sensor.NXT ULTRASONIC)
Access: robot.sensors.ultra nxt

distance()

Measure and return distance.
Returns: Distance of the nearest object.
Type: int (0-255)

1 # Import sensor constants
2 from lib.robot_consts import Sensor
3

4 # Initialize NXT Ultrasonic Sensor on the I2C port
5 robot.init_sensor(sensor_type=Sensor.NXT_ULTRASONIC)
6 # Measure distance
7 distance = robot.sensors.ultra_nxt.distance ()

Code 15: NXT Ultrasonic Sensor usage.

34

4.4 Sound sensor

class SoundSensor(port)

NXT Sound Sensor.

Measuring ambient sound intensity.
Parameters: port (Port) – The port to which the sensor is connected.
Initialization: robot.init sensor(sensor type=Sensor.NXT SOUND,port=Port)
Deinitialization: robot.deinit sensor(sensor type=Sensor.NXT SOUND,port=Port)
Access: robot.sensors.sound[Port]

intensity()

Measure and return sound intensity.
Returns: Sound intensity. 0 for the highest intensity, 32768 for the

lowest.
Type: int (0–32768)

1 # Import sensor and port constants
2 from lib.robot_consts import Sensor , Port
3

4 # Initialize NXT Sound Sensor on sensor port 1
5 robot.init_sensor(sensor_type=Sensor.NXT_SOUND , port=Port.S1)
6

7 # Measure sound intenisty
8 sound_intensity = robot.sensors.sound[Port.S1]. intensity ()

Code 16: NXT Sound Sensor usage.

35

5 EV3 sensors

5.1 Touch sensor

class TouchSensor(port)

EV3 Touch Sensor.

Information about the button state.
Parameters: port (Port) – The port to which the sensor is connected.
Initialization: robot.init sensor(sensor type=Sensor.EV3 TOUCH,-

port=Port)
Deinitialization: robot.deinit sensor(sensor type=Sensor.EV3 TOUCH,-

port=Port)
Access: robot.sensors.touch[Port].

pressed()

Return button state.
Returns: True if the button is pressed, False if not.
Type: bool

1 # Import sensor and port constants
2 from lib.robot_consts import Sensor , Port
3

4 # Initialize EV3 Tocuh Sensor on sensor port 1
5 robot.init_sensor(sensor_type=Sensor.EV3_TOUCH , port=Port.S1)
6

7 # Get button state
8 touch_pressed = robot.sensors.touch[Port.S1]. pressed ()

Code 17: EV3 Touch Sensor usage.

5.2 Color sensor

class ColorSensor(port)

EV3 Color Sensor.

Measuring light intensity and color detection.
Parameters: port (Port) – The port to which the sensor is connected.
Initialization: robot.init sensor(sensor type=Sensor.EV3 COLOR)
Deinitialization: robot.deinit sensor(sensor type=Sensor.EV3 COLOR)
Access: robot.sensors.light[Port]

reflection()

Return last measured reflected light intensity. Sensor red LED periodically
switches on and off. Light intensity is measured when the LED is on, from
this value a measurement when the LED is off is subtracted. The resulting

36

value is adjusted using sensor internal calibration and remapped to the 0-100%
interval.
Returns: Reflected light intensity.
Type: int (0-100%)

reflection raw()

Return last measured reflected light intensity in raw format. Sensor red LED
periodically switches on and off. Light intensity is measured when the LED is
on, from this value a measurement when the LED is off is subtracted.
Returns: Reflected light intensity.
Type: int

ambient()

Return last measured ambient light intensity. The resulting value is adjusted
using sensor internal calibration and remapped to the 0-100% interval.
Returns: Ambient light intensity.
Type: int (0-100%)

rgb raw()

Return last measured reflected light intensity for red, blue and green LEDs
turned on and measured separately.
Returns: Tuple of reflected light intensity (red, green, blue).
Type: (int, int, int)

rgb()

Return last measured reflected light intensity for the red, blue and green LEDs
turned on and measured separately. The resulting values are adjusted using
Open-Cube calibration and remapped to the 0-100% interval.
Returns: Tuple of reflected light intensity (red, green, blue).
Type: (int, int, int) (0-100%)

hsv()

Return HSV values for the last measured reflected light intensity with the red,
blue and green LEDs turned on and measured separately.
Returns: Tuple of HSV.
Type: (hue, saturation, value)

color()

Return a constant of sensor detected color. Color constants can be used Color.
Returns: Detected color constant.
Type: int (1-7 – black, blue, green, yellow, red, white, brown)

1 # Import sensor constants
2 from lib.robot_consts import Sensor , Port
3

37

4 # Initialize EV3 Color Sensor on sensor port 1
5 robot.init_sensor(sensor_type=Sensor.EV3_COLOR , port=Port.S1)
6

7 # Measure reflected light intensity
8 reflection = robot.sensors.light[Port.S1]. reflection ()

Code 18: EV3 Color Sensor usage.

5.3 Ultrasonic sensor

class UltrasonicSensor(port)

EV3 Ultrasonic Sensor.

Measuring distance of an object from the sensor in range 0–2550 mm with an
accuracy of ±30 mm.
Parameters: port (Port) – The port to which the sensor is connected.
Initialization: robot.init sensor(sensor type=Sensor.EV3 ULTRASONIC)
Deinitialization: robot.deinit sensor(sensor type=Sensor.EV3 ULTRASONIC)
Access: robot.sensors.ultrasonic[Port]

distance()

Return last measured distance.
Returns: Distance of the nearest object. in mm
Type: int (0-2550)

presence()

Detect presence of another ultrasonic sensor.
Returns: True if an ultrasonic sensor detected, False otherwise.
Type: bool

1 # Import sensor constants
2 from lib.robot_consts import Sensor , Port
3

4 # Initialize EV3 Ultrasonic Sensor on sensor port 1
5 robot.init_sensor(sensor_type=Sensor.EV3_ULTRASONIC , port=Port.S1)
6

7 # Measure distance
8 distance = robot.sensors.ultrasonic[Port.S1]. distance ()

Code 19: EV3 Ultrasonic sensor usage.

5.4 Infrared sensor

class InfraredSensor(port)

EV3 Infrared Sensor.

Measuring the distance to the nearest surface and control by remote controller.

38

Parameters: port (Port) – The port to which the sensor is connected.
Initialization: robot.init sensor(sensor type=Sensor.EV3 INFRARED)
Deinitialization: robot.deinit sensor(sensor type=Sensor.EV3 INFRARED)
Access: robot.sensors.infrared[Port]

distance()

Measure relative distance to the nearest surface. 100% is approximately 70 cm.
Returns: Relative distance to the nearest surface.
Type: int (0-100%)

seeker(channel)

Detect presence of a remote controller on given channel.
Parameters: channel (int) – Channel to be checked.
Returns: Tuple of direction (-25 is leftmost, 25 rightmost) and dis-

tance (100% is approximately 200 cm, -128 if no driver is
found) of the controller.

Type: (int, int) (-25-25, 0-100%)

1 # Import sensor constants
2 from lib.robot_consts import Sensor , Port
3

4 # Initialize EV3 Infrared Sensor on sensor port 1
5 robot.init_sensor(sensor_type=Sensor.EV3_INFRARED , port=Port.S1)
6 # Measure distance
7 distance = robot.sensors.infrared[Port.S1]. distance ()

Code 20: EV3 Infrared Sensor usage.

5.5 Gyroscopic sensor

class GyroSensor(port)

EV3 Gyro Sensor.

Measuring angle of rotation and angular velocity in one axis.
Parameters: port (Port) – The port to which the sensor is connected.
Initialization: robot.init sensor(sensor type=Sensor.EV3 GYRO)
Deinitialization: robot.deinit sensor(sensor type=Sensor.EV3 GYRO)
Access: robot.sensors.gyro[Port]

angle()

Return angle of rotation of the sensor.
Returns: Angle of rotation.
Type: int (°)

speed()

39

Return angular velocity of the sensor.
Returns: Angular velocity.
Type: int (°/s)

reset angle(angle)

Reset angle measurement or set a new initial angle value.
Parameters: angle (int) – Value that the angle method will return if the

sensor does not move. 0 to reset angle.

angle and speed()

Return angle of rotation and angular velocity of the sensor.
Returns: Tuple of angle of rotation and angular velocity.
Type: (int, int) (°, °/s)

coarse speed()

Return angular velocity of the sensor with lower resolution and wider range.
Returns: Angular velocity.
Type: int (°/s)

1 # Import sensor constants
2 from lib.robot_consts import Sensor , Port
3

4 # Initialize EV3 Gyro Sensor on sensor port 1
5 robot.init_sensor(sensor_type=Sensor.EV3_GYRO , port=Port.S1)
6

7 # Reset angle of rotation
8 robot.sensors.gyro[Port.S1]. reset_angle (0)
9

10 # Measure angle of rotation and angular velocity
11 (angle , speed) = robot.sensors.gyro[Port.S1]. angle_and_speed ()

Code 21: EV3 Gyro Sensor usage.

40

6 Open-Cube sensors

6.1 Color sensor

class ColorSensor(port)

Open-Cube RGB optical reflective and color sensor.

Measuring light intensity and color detection.
Parameters: port (Port) – The port to which the sensor is connected.
Initialization: robot.init sensor(sensor type=Sensor.OC COLOR)
Deinitialization: robot.deinit sensor(sensor type=Sensor.OC COLOR)
Access: robot.sensors.light[Port]

reflection()

Return last measured reflected light intensity. Sensor red LED periodically
switches on and off. Light intensity is measured when the LED is on, from
this value a measurement when the LED is off is subtracted. The resulting
value is adjusted using sensor internal calibration and remapped to the 0-100%
interval.
Returns: Reflected light intensity.
Type: int (0-100%)

reflection raw()

Return last measured reflected light intensity in raw format. Sensor red LED
periodically switches on and off and measures light intensity for both LED
states.
Returns: Tuple of reflected and reference light intensity.
Type: (int, int)

reflection raw green()

Return last measured reflected light intensity in raw format. Sensor green
LED periodically switches on and off and measures light intensity for both
LED states.
Returns: Tuple of reflected and reference light intensity.
Type: (int, int)

reflection raw blue()

Return last measured reflected light intensity in raw format. Sensor blue LED
periodically switches on and off and measures light intensity for both LED
states.
Returns: Tuple of reflected and reference light intensity.
Type: (int, int)

ambient()

41

Return last measured ambient light intensity. The resulting value is adjusted
using sensor internal calibration and remapped to the 0-100% interval.
Returns: Ambient light intensity.
Type: int (0-100%)

rgb raw()

Return last measured reflected light intensity for red, blue and green LEDs
turned on and measured separately and reference light intensity for all LEDs
turned off.
Returns: Tuple of reflected light intensity (red, green, blue) and ref-

erence light intensity.
Type: (int, int, int, int)

rgb()

Return last measured reflected light intensity for the red, blue and green LEDs
turned on and measured separately. The resulting values are adjusted using
Open-Cube calibration and remapped to the 0-100% interval.
Returns: Tuple of reflected light intensity (red, green, blue).
Type: (int, int, int) (0-100%)

hsv()

Return HSV values for the last measured reflected light intensity with the red,
blue and green LEDs turned on and measured separately.
Returns: Tuple HSV.
Type: (hue, saturation, value)

color()

Return a constant of sensor detected color. Color constants can be used Color.
Returns: Detected color constant.
Type: int (1-7 – black, blue, green, yellow, red, white, brown)

1 # Import sensor constants
2 from lib.robot_consts import Sensor , Port
3

4 # Initialize Open -Cube Color Sensor on sensor port 1
5 robot.init_sensor(sensor_type=Sensor.OC_COLOR , port=Port.S1)
6

7 # Measure reflected light intensity
8 reflection = robot.sensors.light[Port.S1]. reflection ()

Code 22: Open-Cube Color Sensor usage.

6.2 Laser distance sensor

class LaserSensor(port)

Open-Cube LIDAR distance sensor.

42

Measuring distance of an object from the sensor in the range 0–4000 mm. The
minimum guaranteed measurement distance is 4 cm. If the object is closer than
this distance, the sensor will measure an inaccurate value.
Parameters: port (Port) – The port to which the sensor is connected.
Initialization: robot.init sensor(sensor type=Sensor.OC LASER)
Deinitialization: robot.deinit sensor(sensor type=Sensor.OC LASER)
Access: robot.sensors.ultrasonic[Port]

distance()

Return last measured distance.
Returns: Distance of the nearest object.
Type: int (0-4000)

distance fov()

Return last measured distance. This mode uses a larger sensor field of view.
Returns: Distance of the nearest object.
Type: int (0-4000)

distance short()

Return last measured distance. This mode is more accurate for shorter dis-
tances (up to 1300 mm) and strong ambient light.
Returns: Distance of the nearest object.
Type: int (0-4000)

set led distance(distance)

Set threshold distance at which the green LED of the sensor lights up.
Parameters: distance (int) – Threshold distance in mm.

1 # Import sensor constants
2 from lib.robot_consts import Sensor , Port
3

4 # Initialize Open -Cube LIDAR on sensor port 1
5 robot.init_sensor(sensor_type=Sensor.OC_LASER , port=Port.S1)
6

7 # Measure distance
8 distance = robot.sensors.laser[Port.S1]. distance ()

Code 23: Open-Cube LIDAR usage.

6.3 Ultrasonic sensor

class UltrasonicSensor(port)

Open-Cube Ultrasonic Sensor.

Measuring distance of an object from the sensor in the range 0–9999 mm.

43

Parameters: port (Port) – The port to which the sensor is connected.
Initialization: robot.init sensor(sensor type=Sensor.OC ULTRASONIC)
Deinitialization: robot.deinit sensor(sensor type=Sensor.OC ULTRASONIC)
Access: robot.sensors.ultrasonic[Port]

distance()

Return last measured distance.
Returns: Distance of the nearest object.
Type: int (0-4000)

set led distance(distance)

Set threshold distance at which the green LED of the sensor lights up.
Parameters: distance (int) – Threshold distance in mm.

1 # Import sensor constants
2 from lib.robot_consts import Sensor , Port
3

4 # Initialize Open -Cube Ultrasonic Sensor on sensor port 1
5 robot.init_sensor(sensor_type=Sensor.OC_ULTRASONIC , port=Port.S1)
6

7 # Measure distance
8 distance = robot.sensors.ultrasonic[Port.S1]. distance ()

Code 24: Open-Cube Ultrasonic sensor usage.

6.4 AHRS sensor

class GyroSensor(port)

Open-Cube AHRS (Attitude and Heading Reference System) Sensor.

Measurement of angular velocity, acceleration and magnetic field intensity in three
axes.
Parameters: port (Port) – The port to which the sensor is connected.
Initialization: robot.init sensor(sensor type=Sensor.OC GYRO)
Deinitialization: robot.deinit sensor(sensor type=Sensor.OC GYRO)
Access: robot.sensors.gyro[Port]

euler angles()

Returns the current sensor orientation in Euler angles calculated from the
gyroscope and accelerometer.
Returns: Tuple of Euler angles yaw, pitch, roll.
Type: (yaw: -180–180°, pitch: -90–90°, roll: -180–180°)

euler angles mag()

Returns the current sensor orientation in Euler angles calculated from the
gyroscope, accelerometer and magnetometer.

44

Returns: Tuple of Euler angles yaw, pitch, roll.
Type: (yaw: -180–180°, pitch: -90–90°, roll: -180–180°)

quaternions()

Returns the current sensor orientation in quaternions calculated from the gy-
roscope and accelerometer.
Returns: Tuple of quaternions.
Type: (0–1, 0–1, 0–1, 0–1)

raw()

Returns the last measured angular velocity, acceleration and magnetic field
intensity in the x, y, z axes.
Returns: Tuple of angular velocity, acceleration and magnetic field

intensity in the x, y, z axes.
Type: (g x: °/s, g y: °/s, g z: °/s, a x: -, a y: -, a z: -, m x: mg,

m y: mg, m z: mg)

calibrate gyro()

Initiates gyro offset calibration. The sensor must not move during the entire
calibration period.
Returns: 1 if calibration is completed.
Type: int (0/1)

calibrate mag()

Initiates a hard iron calibration of the magnetometer. Rotate the sensor until
the calibration is complete.
Returns: 1 if calibration is completed.
Type: int (0/1)

1 # Import sensor constants
2 from lib.robot_consts import Sensor , Port
3

4 # Initialize the OC AHRS sensor on sensor port1
5 robot.init_sensor(sensor_type=Sensor.OC_GYRO , port=Port.S1)
6

7 # Gyroscope calibration
8 calibrated = 0
9 while not calibrated:

10 calibrated = robot.sensors.gyro[Port.S1]. calibrate_gyro ()
11

12 # Get sensor orientation
13 euler_angles = robot.sensors.gyro[Port.S1]. euler_angles ()
14 yaw , pitch , roll = euler_angles [0], euler_angles [1], euler_angles [2]

Code 25: Open-Cube AHRS sensor usage.

45

7 Motor

The motors from the NXT and EV3 sets are identical internally, differing only in appear-
ance and plastic construction.

class Motor(port)

Rotary encoders are located on the motors, which allow detecting the motor rota-
tional position and approximating the speed of rotation.

Provides three modes of control – power, position, speed.

In the power control mode, the user directly sets the desired power on the motor
in the range of -100–100%.

In the position control mode, the user selects the desired motor rotational position
in °. The control is mediated by a PID controller with adjustable constants.

In the speed control mode, the user selects the desired motor speed o rotation in
°/s. The maximum speed when the motor is unloaded is approximately 950 °/s.
The control is mediated by a PID controller with adjustable constants.
Parameters: port (Port) – The port to which the motor is connected.
Initialization: robot.init motor(port=Port)
Deinitialization: robot.deinit motor(port=Port)
Access: robot.motor[Port]

Parameters: port (Port) – The port to which the motor is connected.

set power(power)

Set power on the motor.
Parameters: power (float) – Desired power on the motor in the range of

-100–100%. If a value is entered outside this range, the limit
value is set.

init encoder()

Initialize encoders with a measurement of the motor position and speed on all
motors.

deinit encoder()

Deinitialize encoders with a measurement of the motor position and speed on
all motors.

position()

Return motor rotational position.
Returns: Motor rotational position.
Type: angle: °

46

speed()

Return motor speed o rotation.
Returns: Motor speed o rotation.
Type: angular velocity: °/s

init regulator()

Initialize motor PID controller.

deinit regulator()

Deinitialize motor PID controller.

set regulator position(position)

Set motor to position control mode.
Parameters: position (int) – Required motor position in °.

regulator pos set consts(p, i, d)

Set PID constants of the position controller. The default values are 0.9, 0.1
and 0.
Parameters: • p (float) – Constant of the proportional component.

• i (float) – Constant of the integration component.
• d (float) – Constant of the derivative component.

set regulator speed(speed)

Set motor to speed control mode.
Parameters: speed (int) – Required motor speed of rotation in °/s.

regulator speed set consts(p, i, d)

Set PID constants of the speed controller. The default values are 0.1, 0.8 and
0.
Parameters: • p (float) – Constant of the proportional component.

• i (float) – Constant of the integration component.
• d (float) – Constant of the derivative component.

regulator error()

Return current control error.
Returns: Control error.
Type: • position control modey – position: °

• speed control mode – angular velocity: °/s

47

regulator power()

Return current control action.
Returns: Control action.
Type: power (-100–100%)

1 # Import port constants
2 from lib.robot_consts import Port
3

4 # Initialize motors on motor ports 1 and 2
5 robot.init_motor(Port.M1)
6 robot.init_motor(Port.M2)
7

8 # Set power on the motors to 50%, and 20% in the opposite direction of
rotation

9 robot.motors[Port.M1]. set_power (50)
10 robot.motors[Port.M2]. set_power (-20)
11

12 # Initialize motors encoders
13 robot.motors[Port.M1]. init_encoder ()
14 robot.motors[Port.M2]. init_encoder ()
15

16 # Measure current position and speed of rotation of motors
17 pos1 = robot.motors[Port.M1]. position ()
18 pos2 = robot.motors[Port.M2]. position ()
19 speed1 = robot.motors[Port.M1]. speed()
20 speed2 = robot.motors[Port.M2]. speed()

Code 26: Motor usage.

48

8 Parameters and constants

Parameters and constants importable from lib.robot consts.

8.1 Sensor

class Sensor

Sensor types.

NO SENSOR

No sensor.

NXT LIGHT

NXT Light Sensor.

NXT ULTRA

NXT Ultrasonic Sensro.

NXT TOUCH

NXT Touch Sensor.

NXT SOUND

NXT Sound Sensor.

GYRO ACC

ICM20608-G gyroscope and accelerometer.

EV3 COLOR

EV3 Color Sensor.

EV3 GYRO

EV3 Gyroscopic Sensor.

EV3 INFRARED

EV3 Infrarfed Sensor.

EV3 TOUCH

EV3 Touch Sensor.

EV3 ULTRASONIC

EV3 Ultrasonic Sensor.

OC LASER

Open-Cube LIDAR.

49

OC COLOR

Open-Cube Color Sensor.

OC ULTRASONIC

Open-Cube Ultrasonic Sensor.

OC GYRO

Open-Cube AHRS Sensor.

8.2 Port

class Port

Motor and sensor port of the cube.

M1

Motor port 1.

M2

Motor port 2.

M3

Motor port 3.

M4

Motor port 4.

S1

Sensor port 1.

S2

Sensor port 2.

S3

Sensor port 3.

S4

Sensor port 4.

8.3 Button

class Button

Cube buttons.

POWER

50

LEFT

RIGHT

OK

UP

DOWN

8.4 Light

class Light

Measured value when the NXT light sensor LED is off and on.

OFF

Measured value when the NXT light sensor LED is off.

ON

Measured value when the NXT light sensor LED is on.

8.5 GyroAcc

class GyroAcc

Measured value of built-in gyroscope and accelerometer ICM42688 in x, y, z axes
and sensor interrupt pin.

AX

Acceleration in the x-axis

AY

Acceleration in the y-axis

AZ

Acceleration in the z-axis

GX

Angular velocity in the x-axis.

GY

Angular velocity in the y-axis.

GZ

Angular velocity in the z-axis.

51

IRQ PIN

Pin of the micro controller to which the ICM42688 is connected.

8.6 Color

class Color

Colors detected by the EV3 and Open-Cube Color Sensors.

BLACK

BLUE

GREEN

YELLOW

RED

WHITE

BROWN

52

9 Useful MicroPython functions

9.1 Information printing

1 x, y = 64, 128.4096
2 y_string = "y"
3

4 # 1. option - separation by commas
5 # This option is suitable for simple and quick printing
6 # Individual elements are separated by a space when printed
7 print("x =", x, ",", y_string , "=", y)
8 # x = 64, y = 128.4096
9

10 # 2. option - use of f-string
11 # This option allows formatting float numbers
12 # d indicates integer type , s indicates string type and f indicates

float type
13 # .2 specifies the number of displayed decimal places
14 print(f"x = {x:d}, {y_string:s} = {y:.2f}")
15 # x = 64, y = 128.41
16

17 # The use of f-string is also suitable for the cube display
18 robot.display.fill (0)
19 # first line of the display
20 robot.display.text(f"x = {x:d}", 0, 0, 1)
21 # second line of the display
22 robot.display.text(f"{y_string:s} = {y:.2f}", 0, 10, 1)
23 robot.display.show()
24

25 # Printing without line breaks
26 for i in range (10)
27 print(i, end="")
28 print() # line break at the end
29 # 123456789

Code 27: Printing information.

9.2 Random number generation

Example of random number generation.

• MicroPython random library documentation [https://docs.micropython.org/en/
latest/library/random.html]

1 # Import functions from the random library
2 from random import random , randint
3

4 random () # Random float number in interval [0.0, 1.0)
5

6 a, b = 0, 100
7 randint(a, b) # Random integer in the interval [a, b]

Code 28: Random library usage.

53

https://docs.micropython.org/en/latest/library/random.html
https://docs.micropython.org/en/latest/library/random.html
https://docs.micropython.org/en/latest/library/random.html

9.3 Time

Example of functions for putting the program to sleep, timing, and periodic function calls
using the timer.

• MicroPython time library documentation [https://docs.micropython.org/en/latest/
library/time.html]

• MicroPython documentation of Timer class [https://docs.micropython.org/en/
latest/library/machine.Timer.html]

1 # Import functions from the sleep library
2 from time import sleep , sleep_ms , sleep_us , ticks_us , ticks_diff
3

4 start_time = ticks_us () # Get start time in microseconds
5

6 sleep (1) # Sleep for 1 second
7 sleep_ms (2) # Sleep for 2 milliseconds
8 sleep_us (3) # Sleep for 3 microseconds
9

10 end_time = ticks_us () # Get end time in microseconds
11 print(ticks_diff(end_time , start_time), "us") # 1002003 us

Code 29: Time library usage.

1 # Import class Timer
2 from machine import Timer
3

4 counter = 0
5

6 # Definition of callback function for timers
7 def my_callback(t):
8 global counter
9 counter += 1

10 print(counter)
11

12 # Initializing a timer that calls the callback function periodically
with a frequency of 100 Hz

13 # -1 indicates a virtual timer (the rp2040 microcontroller does not
allow the use of hardware timers)

14 timer1 = Timer(-1)
15 timer1.init(mode=Timer.PERIODIC , freq =100, callback=my_callback)
16

17 # Initializing a timer that calls the callback function only once after
1000 ms

18 timer2 = Timer(-1)
19 timer2.init(mode=Timer.ONE_SHOT , period =1000, callback=my_callback)
20

21 # Turn off the periodic timer
22 timer1.deinit ()

Code 30: Timer class usage.

54

https://docs.micropython.org/en/latest/library/time.html
https://docs.micropython.org/en/latest/library/time.html
https://docs.micropython.org/en/latest/library/time.html
https://docs.micropython.org/en/latest/library/machine.Timer.html
https://docs.micropython.org/en/latest/library/machine.Timer.html
https://docs.micropython.org/en/latest/library/machine.Timer.html

9.4 Binary data manipulation

These functions are useful when working with binary data e.g. when communicating
wirelessly via ESP32.

• MicroPython struct library documentation [https://docs.micropython.org/en/latest/
library/struct.html]

1 # Import struct library
2 import struct
3

4 # Creating binary data from three numbers. The format of the numbers is
determined by the string of the first function argument. The string
format is described in detail in the struct library documentation.

5 # In this case , the first number is stored as int (4 bytes), the second
as float (4 bytes) and the third as double (8 bytes).

6 binary_data = struct.pack("@ifd", 12, 1.234 , 5)
7

8 # Backward Conversion of binary data
9 values = struct.unpack("@ifd", binary_data)

10

11 # Compute the memory size in bytes needed to store binary data
12 byte_size = struct.calcsize("@ifd")
13 print(byte_size) # 16

Code 31: Struct library usage.

9.5 Multi-core programming

The rp2040 micro controller has 2 cores, only one core is used by default. The use of a
second core is possible, but is currently only experimental in MicroPython.

• Python thread library documentation [https://docs.python.org/3.5/library/_thread.
html]

1 # Import library _thread a function sleep
2 import _thread
3 from time import sleep
4

5 lock = _thread.allocate_lock ()
6 counter = 0
7

8 # Second core function definition
9 def core2 ():

10 global counter
11 lock.acquire () # Lock for working with shared data
12 counter += 1
13 lock.release () # Release
14 _thread.exit() # Termination of second core
15

16 # Second core activation
17 _thread.start_new_thread(core2 , ())
18

19 lock.acquire () # Lock for working with shared data
20 print(counter)
21 lock.release () # Release

Code 32: thread library usage.

55

https://docs.micropython.org/en/latest/library/struct.html
https://docs.micropython.org/en/latest/library/struct.html
https://docs.micropython.org/en/latest/library/struct.html
https://docs.python.org/3.5/library/_thread.html
https://docs.python.org/3.5/library/_thread.html
https://docs.python.org/3.5/library/_thread.html

10 Used Python terms

Datova types:

• int (integer) – (12, -51),

• float – decimal number (120.32, -0.1248),

• bool – logical value (True, False),

• str (string) – text string ("abc", "Open-Cube").

Data structures:

• list – sequence of data that can contain elements of different data types. Individual
elements can be changed, added and removed. It is written in square brackets and
the elements are separated by commas. [1, "Open-Cube", True, 0.23]

• tuple – A sequence of data that can contain elements of different data types.
Individual elements cannot be changed, added or removed. It is written in round
brackets and the elements are separated by commas. (1, "Open-Cube", True, 0.23)

Key words:

• None – no value (sensor not working, failed to measure value, etc.).

56

	Firmware installation
	Thonny IDE
	Recommended settings
	Uploading code to the cube
	Run the program independently

	Robot
	Buttons
	LED
	Buzzer
	Battery
	Display
	Gyroscope and accelerometer
	I2C master
	I2C slave
	ESP32 communication
	Bluetooth ESP32 connection with external device
	Cube
	Remote control of the cube
	Wireless program launch
	Serial Bluetooth Terminal
	Matlab
	Simulink

	NXT sensors
	Touch sensor
	Light sensor
	Ultrasonic sensor
	Sound sensor

	EV3 sensors
	Touch sensor
	Color sensor
	Ultrasonic sensor
	Infrared sensor
	Gyroscopic sensor

	Open-Cube sensors
	Color sensor
	Laser distance sensor
	Ultrasonic sensor
	AHRS sensor

	Motor
	Parameters and constants
	Sensor
	Port
	Button
	Light
	GyroAcc
	Color

	Useful MicroPython functions
	Information printing
	Random number generation
	Time
	Binary data manipulation
	Multi-core programming

	Used Python terms

